Member-only story
Optimizing Apache Spark Performance on Databricks: Tuning and Monitoring
Introduction
Performance optimization in Apache Spark requires understanding of memory management, execution plans, and resource utilization. This guide covers key optimization techniques with practical examples.
1. Memory Management Optimization
Analyzing Memory Usage
# Get current memory usage statistics
from pyspark.sql import SparkSession
def analyze_memory_usage():
spark = SparkSession.builder.getOrCreate()
memory_metrics = spark.sparkContext.statusTracker().getExecutorMetrics()
for executor in memory_metrics:
print(f"Executor ID: {executor.id}")
print(f"Memory Used: {executor.memoryUsed / 1024 / 1024:.2f} MB")
print(f"Memory Free: {executor.memoryFree / 1024 / 1024:.2f} MB")
# Configure memory settings
spark.conf.set("spark.memory.fraction", 0.8)
spark.conf.set("spark.memory.storageFraction", 0.3)
2. Partition Optimization
Dynamic Partition Pruning
from pyspark.sql.functions import col
def optimize_partitions(df, partition_column):
# Get number of records
total_records = df.count()
# Calculate optimal partition size (target…