Member-only story

Optimizing Apache Spark Performance on Databricks: Tuning and Monitoring

Aarthy Ramachandran

Photo by KOBU Agency on Unsplash

Introduction

Performance optimization in Apache Spark requires understanding of memory management, execution plans, and resource utilization. This guide covers key optimization techniques with practical examples.

1. Memory Management Optimization

Analyzing Memory Usage

# Get current memory usage statistics
from pyspark.sql import SparkSession

def analyze_memory_usage():
spark = SparkSession.builder.getOrCreate()
memory_metrics = spark.sparkContext.statusTracker().getExecutorMetrics()

for executor in memory_metrics:
print(f"Executor ID: {executor.id}")
print(f"Memory Used: {executor.memoryUsed / 1024 / 1024:.2f} MB")
print(f"Memory Free: {executor.memoryFree / 1024 / 1024:.2f} MB")

# Configure memory settings
spark.conf.set("spark.memory.fraction", 0.8)
spark.conf.set("spark.memory.storageFraction", 0.3)

2. Partition Optimization

Dynamic Partition Pruning

from pyspark.sql.functions import col

def optimize_partitions(df, partition_column):
# Get number of records
total_records = df.count()

# Calculate optimal partition size (target…

Create an account to read the full story.

The author made this story available to Medium members only.
If you’re new to Medium, create a new account to read this story on us.

Or, continue in mobile web

Already have an account? Sign in

Aarthy Ramachandran
Aarthy Ramachandran

Written by Aarthy Ramachandran

Principal Architect | Cloud & Data Solutions | AI & Web Development Expert | Enterprise-Scale Innovator | Ex-Amazon Ex-Trimble

No responses yet

Write a response